Structure Reports

Online
ISSN 1600-5368

3-(4-Chlorophenyl)-5-(thiophen-2-yl)-4,5-dihydro-1 H-pyrazole-1-carbothioamide

Hoong-Kun Fun, ${ }^{\mathbf{a}} \ddagger$ Thitipone Suwunwong ${ }^{\mathbf{b}}$ and Suchada Chantrapromma ${ }^{\text {b }} \S$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {b }}$ Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
Correspondence e-mail: hkfun@usm.my

Received 3 December 2011; accepted 20 December 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; disorder in main residue; R factor $=0.049 ; \omega R$ factor $=0.138 ;$ data-to-parameter ratio $=19.9$.

In the title pyrazoline derivative, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{~S}_{2}$, the thiophene ring is disordered over two orientations with a refined siteoccupancy ratio of 0.832 (4):0.168 (4). The pyrazoline ring adopts an envelope conformation with the C atom linking the thiophene ring at the flap. The dihedral angles between the benzene ring and the major and minor components of the thiophene ring are 88.6 (3) and $85.6(15)^{\circ}$, respectively while the dihedral angle between the disorder components of the ring is $3.1(16)^{\circ}$. The mean plane of the pyrazoline ring makes dihedral angles of 11.86 (13), 80.1 (3) and $83.0(15)^{\circ}$, respectively, with the benzene ring, and the major and minor components of the thiophene ring. An intramolecular N (amide) $-\mathrm{H} \cdots \mathrm{N}($ pyrazoline $)$ hydrogen bond generates an $S(5)$ ring motif. In the crystal, molecules are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and N (amide) $-\mathrm{H} \cdots \mathrm{S}$ interactions into a tape along [10 $\overline{1}] . \mathrm{C}-\mathrm{H} \cdots \pi$ interactions are also observed.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogenbond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer \& Pople (1975). For related structures, see: Fun et al. (2011); Nonthason et al. (2011). For background to and applications of pyrazoline derivatives, see: Bai et al. (2007); Gong et al. (2011); Husain et al. (2008); Khode et al. (2009); Shoman et al. (2009); Taj et al. (2011). For the stability of the temperature controller, see: Cosier \& Glazer (1986).

[^0]

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{~S}_{2}$
$M_{r}=321.86$
Monoclinic, $P 2_{1} / n$
$a=6.7784$ (3) А
$b=25.2104$ (11) \AA
$c=8.4628$ (4) A
$\beta=90.339(2)^{\circ}$
$V=1446.15(11) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.55 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.56 \times 0.09 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEX DUO CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.749, T_{\text {max }}=0.958$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.138$
$S=1.10$
4206 reflections
211 parameters
10 restraints

32828 measured reflections 4206 independent reflections 3801 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.047$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.59 \mathrm{e}^{-3}$

Table 1

Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{S} 1 A / \mathrm{C} 1 A-\mathrm{C} 3 A / \mathrm{C} 4$ and $\mathrm{S} 1 B / \mathrm{C} 1 B-\mathrm{C} 3 B /$ C 4 rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H1N3..N2	0.90 (4)	2.28 (4)	2.656 (3)	105 (3)
N3-H2N3 \cdot S $2^{\text {i }}$	0.89 (4)	2.52 (4)	3.400 (3)	170 (3)
C5-H5A \cdots S1 $A^{\text {ii }}$	1.00	2.86	3.664 (3)	138
C9-H9A $\cdots \mathrm{Cg} 1^{\text {iii }}$	0.95	2.79	3.628 (4)	148
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A} \cdots \mathrm{Cg} 2{ }^{\text {iii }}$	0.95	2.77	3.595 (18)	145

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Prince of Songkla University for financial support. The authors also thank the Thailand Research Fund (TRF) for a research grant (RSA5280033) and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

[^1]
organic compounds

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bai, G., Li, J., Li, D., Dong, C., Han, X. \& Lin, P. (2007). Dyes Pigm. 75, 93-98. Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Fun, H.-K., Suwunwong, T. \& Chantrapromma, S. (2011). Acta Cryst. E67, o701-o702.
Gong, Z.-L., Xie, Y.-S., Zhao, B.-X., Lv, H.-S. \& Liu, W.-Y. (2011). J. Fluoresc. 21, 355-364.

Husain, K., Abid, M. \& Azam, A. (2008). Eur. J. Med. Chem. 43, 393-403. Khode, S., Maddi, V., Aragade, P., Palkar, M., Ronad, P. K., Mamledesai, S., Thippeswamy, A. H. M. \& Satyanarayana, D. (2009). Eur. J. Med. Chem. 44, 1682-1688.
Nonthason, P., Suwunwong, T., Chantrapromma, S. \& Fun, H.-K. (2011). Acta Cryst. E67, o3501-o3502.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. \& Morsy, M. A. (2009). Eur. J. Med. Chem. 44, 3068-3076

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Taj, T., Kamble, R. R., Gireesh, T. M., Hunnur, R. K. \& Margankop, S. B. (2011). Eur. J. Med. Chem. 46, 4366-4373.

supplementary materials

Acta Cryst. (2012). E68, o259-o260 [doi:10.1107/S1600536811054754]

3-(4-Chlorophenyl)-5-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide

H.-K. Fun, T. Suwunwong and S. Chantrapromma

Comment

The synthesis of pyrazoline derivatives which contain 5-membered heterocyclic structure have attracted a lot of interests in many fields, for example as in medicinal chemistry owing to their biological properties such as antiamoebic (Husain et al., 2008), anti-inflammatory (Shoman et al., 2009), analgesic (Khode et al., 2009) and antioxidant (Taj et al., 2011) activities, as well as in fluorescence (Bai et al., 2007; Gong et al., 2011) studies. Our on-going research on biological activities and fluorescent property of pyrazoline derivatives has led us to synthesize the title compound (I) in order to compare its biological activity with the related compounds (Fun et al., 2011; Nonthason et al., 2011).

In the molecule of $(\mathrm{I}), \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{~S}_{2}$, the thiophene ring is disordered over two positions with the refined site-occupancy ratio of 0.832 (4):0.168(4). The dihedral angles between the benzene and the major and minor components of the thiophene rings are 88.6 (3) and $85.6(15)^{\circ}$ respectively. The pyrazoline ring is in an envelope conformation [pucker atom at C5 with deviation of - 0.125 (3) \AA] with puckering parameter $\mathrm{Q}=0.206$ (3) \AA and $\varphi=137.6$ (7) ${ }^{\circ}$ (Cremer \& Pople, 1975). The dihedral angle between the mean plane through pyrazoline ring and the benzene ring is $11.86(13)^{\circ}$, whereas these values are 80.1 (3) and $83.0(15)^{\circ}$ between the pyrazoline and the major and minor components of the thiophene ring. The carbothioamide unit lies almost on the same plane with pyrazoline ring as can be indicated by the torsion angles N2-N1-C14-N3 = -3.3 (4) ${ }^{\circ}$ and $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 14-\mathrm{S} 2=0.4(3)^{\circ}$. Intramolecular $\mathrm{N} 3-\mathrm{H} 1 \mathrm{~N} 3 \cdots \mathrm{~N} 2$ hydrogen bond generate an $\mathrm{S}(5)$ ring motif (Bernstein et al., 1995). Bond distances of (I) are in normal range (Allen et al., 1987)

In the crystal packing, (Fig. 2), the molecules are linked by weak $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{~S} 1 \mathrm{~A}$ intermolecular interactions (Table 1) into cyclic centrosymmetric $R^{2}{ }_{2}(8)$ dimers (Bernstein et al., 1995). These dimers are further linked by N3-H2N3 \cdots S2 hydrogen bonds (Table 1) into a tape along the [10 $]$ direction (Fig. 2). The crystal is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds together with weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 1).

Experimental

The title compound was synthesized by dissolving (E)-1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one ($0.25 \mathrm{~g}, 1.0 \mathrm{mmol}$) in a solution of $\mathrm{KOH}(0.06 \mathrm{~g}, 1.0 \mathrm{mmol})$ in ethanol $(20 \mathrm{ml})$. An excess thiosemicarbazide $(0.14 \mathrm{~g}, 1.5 \mathrm{mmol})$ in ethanol (20 ml) was then added, and the reaction mixture was vigorously stirred and refluxed for 4 h . The pale-yellow solid of the title compound obtained after cooling of the reaction was filtered off under vacuum. Pale yellow needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1 \mathrm{v} / \mathrm{v})$ by slow evaporation of the solvent at room temperature after several days.

Refinement

Amide H atoms were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.95 \AA$ for aromatic and $0.99 \AA$ for CH_{2} atoms. The

supplementary materials

$U_{\text {iso }}$ values were constrained to be $1.2 U_{\text {eq }}$ of the carrier atoms. The thiophene ring is disordered over two positions with the refined site-occupancy ratio of 0.832 (4):0.168 (4). In the final refinement, distances restraint was used. The highest residual electron density peak is located at $1.35 \AA$ from $\mathrm{Cl1}$ and the deepest hole is located at $0.52 \AA$ from Cl1. The crystal was a pseudo-merohedral twin and the structure was refined with the twin law ($-1000-10001$). The BASF was refined to 0.138 (1).

Figures

Fig. 1. The molecular structure of the title compound, showing 45% probability displacement ellipsoids and the atom-numbering scheme. Open bond show the minor B component. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond was shown as dash line.

Fig. 2. The crystal packing of the title compound viewed along the a axis. Only the major component was shown. For clarify, only H atoms involved in hydrogen bonds were shown. Hydrogen bonds were shown as dashed lines.

3-(4-Chlorophenyl)-5-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{~S}_{2}$
$F(000)=664$
$M_{r}=321.86$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=6.7784$ (3) \AA
$b=25.2104$ (11) \AA
$c=8.4628(4) \AA$
$\beta=90.339(2)^{\circ}$
$V=1446.15(11) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.478 \mathrm{Mg} \mathrm{m}^{-3}$
$\theta=0.8-30.0^{\circ}$
$\mu=0.55 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, pale-yellow

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4206 reflections
$0.56 \times 0.09 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEX DUO CCD area-detector

diffractometer

Radiation source: sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)

4206 independent reflections
3801 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=0.8^{\circ}$
$h=-9 \rightarrow 9$
$T_{\text {min }}=0.749, T_{\text {max }}=0.958$
32828 measured reflections

$$
\begin{aligned}
& k=-35 \rightarrow 35 \\
& l=-11 \rightarrow 11
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.138$
$S=1.10$
4206 reflections
211 parameters
10 restraints

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C11	$-0.33129(11)$	$0.74126(3)$	$0.43185(9)$	$0.02922(17)$	
S2	$0.81787(10)$	$1.01564(3)$	$0.70895(8)$	$0.02383(16)$	
N1	$0.5530(3)$	$0.93930(8)$	$0.6751(3)$	$0.0187(4)$	
N2	$0.4447(3)$	$0.90237(8)$	$0.5877(2)$	$0.0182(4)$	
C9	$-0.0433(4)$	$0.85079(10)$	$0.6843(3)$	$0.0200(5)$	
H9A	-0.0680	0.8721	0.7747	0.024^{*}	
N3	$0.7384(4)$	$0.95592(10)$	$0.4561(3)$	$0.0264(5)$	
C4	$0.5995(4)$	$0.91382(10)$	$0.9528(3)$	$0.0190(4)$	
S1A	$0.81128(18)$	$0.93898(4)$	$1.03729(11)$	$0.0196(2)$	$0.832(4)$
C1A	$0.8584(10)$	$0.8815(2)$	$1.1384(9)$	$0.0242(10)$	$0.832(4)$
H1AA	0.9681	0.8764	1.2071	$0.029 *$	$0.832(4)$
C2A	$0.7184(16)$	$0.8437(3)$	$1.1078(12)$	$0.0289(15)$	$0.832(4)$
H2AA	0.7203	0.8090	1.1519	0.035^{*}	$0.832(4)$

C3A	0.5701 (18)	0.8623 (3)	1.0024 (14) 0	0.0263 (16)	0.832 (4)
H3AA	0.4610	0.8413	0.96920	0.032*	0.832 (4)
S1B	0.544 (2)	0.8499 (4)	0.9965 (18) 0	0.0243 (19)	0.168 (4)
C1B	0.751 (7)	0.8414 (15)	1.110 (8) 0	0.038 (14)*	0.168 (4)
H1BA	0.7880	0.8089	1.1588 0.0.	0.046*	0.168 (4)
C2B	0.856 (7)	0.8873 (15)	1.122 (7) 0	0.041 (9)*	0.168 (4)
H2BA	0.9726	0.8912	1.18320	0.049*	0.168 (4)
C3B	0.770 (4)	0.9289 (10)	1.031 (4) 0	0.041 (9)*	0.168 (4)
H3BA	0.8240	0.9636	1.0250 0,	0.049*	0.168 (4)
C5	0.4780 (4)	0.94575 (10)	0.8380 (3) 0	0.0186 (4)	
H5A	0.4751	0.9840	0.8691	0.022*	
C6	0.2675 (4)	0.92375 (11)	0.8167 (3) 0	0.0210 (5)	
H6A	0.2293	0.9009	0.9067 0.	0.025*	
H6B	0.1698	0.9527	0.8047 0.	0.025*	
C7	0.2870 (3)	0.89198 (9)	0.6660 (3) 0	0.0170 (4)	
C8	0.1379 (4)	0.85466 (9)	0.6075 (3) 0	0.0174 (4)	
C10	-0.1881 (4)	0.81612 (10)	0.6300 (3) 0	0.0207 (5)	
H10A	-0.3117	0.8140	0.6819 0.	0.025*	
C11	-0.1501 (4)	0.78485 (10)	0.4997 (3) 0	0.0213 (5)	
C12	0.0296 (4)	0.78746 (11)	0.4212 (3) 0	0.0238 (5)	
H12A	0.0537	0.7655	0.3321	0.029*	
C13	0.1730 (4)	0.82256 (10)	0.4750 (3) 0	0.0219 (5)	
H13A	0.2957	0.8249	0.4217 0.	0.026*	
C14	0.6989 (4)	0.96747 (10)	0.6069 (3) 0	0.0205 (5)	
H1N3	0.673 (6)	0.9294 (15)	0.408 (5) 0	0.030 (9)*	
H2N3	0.851 (6)	0.9675 (15)	0.416 (4) 0	0.032 (9)*	
Atomic displacement parameters $\left(A^{2}\right)$					
	U^{11}	U^{22}	$U^{33} \quad U^{12}$	U^{13}	U^{23}
Cl1	0.0269 (3)	0.0216 (3)	0.0391 (4) -0.0052 (2)	-0.0061 (3)	-0.0048 (3)
S2	0.0228 (3)	0.0227 (3)	0.0259 (3) -0.0056 (2)	-0.0034 (2)	0.0011 (2)
N1	0.0178 (9)	0.0199 (10)	0.0183 (9) -0.0026 (7)	-0.0012 (7)	-0.0010 (8)
N2	0.0172 (9)	0.0188 (9)	0.0186 (9) -0.0006 (7)	-0.0026 (7)	0.0008 (7)
C9	0.0199 (11)	0.0196 (11)	0.0204 (11) 0.0018 (9)	-0.0006 (8)	-0.0018 (9)
N3	0.0265 (11)	0.0329 (13)	0.0198 (10) -0.0107(10)) 0.0001 (9)	0.0018 (9)
C4	0.0185 (10)	0.0215 (11)	$0.0171(10) \quad-0.0012(8)$	0.0002 (8)	-0.0041 (9)
S1A	0.0192 (4)	0.0206 (4)	0.0188 (4) 0.0009 (4)	-0.0021 (3)	-0.0030 (3)
C1A	0.029 (2)	0.024 (2)	0.019 (2) 0.0046 (15)	-0.0052 (13)	-0.0011 (15)
C2A	0.037 (3)	0.023 (2)	0.027 (3) -0.003 (2)	-0.006 (2)	0.0051 (14)
C3A	0.028 (3)	0.027 (4)	0.024 (2) -0.009 (3)	-0.005 (2)	0.000 (3)
S1B	0.026 (4)	0.022 (4)	0.025 (3) -0.007 (3)	-0.007 (2)	0.000 (3)
C5	0.0171 (10)	0.0196 (11)	0.0191 (10) -0.0004 (8)	0.0004 (8)	-0.0037 (8)
C6	0.0185 (11)	0.0222 (11)	0.0224 (11) -0.0010 (9)	0.0003 (9)	-0.0052 (9)
C7	0.0172 (10)	0.0163 (10)	0.0174 (10) 0.0007 (8)	-0.0031 (8)	0.0001 (8)
C8	0.0196 (11)	0.0150 (10)	0.0175 (10) 0.0009 (8)	-0.0020 (8)	0.0010 (8)
C10	0.0182 (10)	0.0182 (11)	0.0257 (12) -0.0002 (9)	-0.0008 (9)	0.0008 (9)
C11	0.0218 (11)	0.0158 (10)	0.0263 (12) -0.0019 (9)	-0.0047 (9)	-0.0003 (9)

sup-4

supplementary materials

C12	$0.0270(12)$	$0.0211(12)$	$0.0231(12)$	$-0.0001(10)$	$-0.0027(10)$	$-0.0062(9)$
C13	$0.0219(11)$	$0.0216(11)$	$0.0222(11)$	$0.0004(10)$	$0.0011(9)$	$-0.0028(9)$
C14	$0.0200(11)$	$0.0213(11)$	$0.0201(11)$	$-0.0015(9)$	$-0.0029(9)$	$0.0045(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

C11-C11	1.743 (3)
S2-C14	1.692 (3)
N1-C14	1.350 (3)
N1-N2	1.395 (3)
N1-C5	1.481 (3)
N2-C7	1.288 (3)
C9-C10	1.390 (3)
C9-C8	1.397 (3)
C9-H9A	0.9500
N3-C14	1.338 (3)
N3-H1N3	0.90 (4)
N3-H2N3	0.89 (4)
C4-C3A	1.379 (8)
C4-C3B	1.381 (18)
$\mathrm{C} 4-\mathrm{C} 5$	1.503 (3)
C4-S1B	1.696 (10)
C4-S1A	1.721 (3)
S1A-C1A	1.713 (6)
C1A-C2A	1.368 (6)
C1A-H1AA	0.9500
C2A-C3A	1.421 (12)
C14-N1-N2	120.6 (2)
C14-N1-C5	126.6 (2)
N2-N1-C5	112.60 (19)
C7-N2-N1	107.4 (2)
C10-C9-C8	120.7 (2)
C10-C9-H9A	119.6
C8-C9-H9A	119.6
C14-N3-H1N3	120 (3)
C14-N3-H2N3	118 (3)
H1N3-N3-H2N3	119 (4)
C3A-C4-C3B	103.6 (13)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 5$	128.4 (5)
C3B-C4-C5	128.0 (11)
C3B-C4-S1B	110.0 (11)
C5-C4-S1B	121.9 (5)
C3A-C4-S1A	110.0 (5)
C5-C4-S1A	121.56 (18)
S1B-C4-S1A	116.4 (5)
C1A-S1A-C4	92.7 (2)
C2A-C1A-S1A	111.6 (4)
C2A-C1A-H1AA	124.2
S1A-C1A-H1AA	124.2

C2A-H2AA	0.9500
C3A-H3AA	0.9500
S1B-C1B	1.71 (2)
C1B-C2B	1.363 (18)
C1B-H1BA	0.9500
C2B-C3B	1.42 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	0.9500
C3B-H3BA	0.9500
C5-C6	1.541 (3)
C5-H5A	1.0000
C6-C7	1.512 (3)
C6-H6A	0.9900
C6-H6B	0.9900
C7- C 8	1.465 (3)
C8-C13	1.405 (3)
C10-C11	1.381 (4)
C10-H10A	0.9500
C11-C12	1.392 (4)
C12-C13	1.389 (4)
C12-H12A	0.9500
C13-H13A	0.9500
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{BA}$	123.4
C2B-C3B-H3BA	123.4
N1-C5-C4	110.7 (2)
N1-C5-C6	100.05 (19)
C4-C5-C6	112.7 (2)
N1-C5-H5A	111.0
C4-C5-H5A	111.0
C6-C5-H5A	111.0
C7-C6-C5	101.7 (2)
C7-C6-H6A	111.4
C5-C6-H6A	111.4
C7- $66-\mathrm{H} 6 \mathrm{~B}$	111.4
C5-C6-H6B	111.4
H6A-C6-H6B	109.3
N2-C7-C8	122.0 (2)
N2-C7-C6	113.8 (2)
C8-C7-C6	124.2 (2)
C9-C8-C13	119.0 (2)
C9-C8-C7	119.6 (2)
C13-C8-C7	121.4 (2)
C11-C10-C9	119.2 (2)
C11-C10-H10A	120.4

C1A-C2A-C3A	112.1 (5)
C1A-C2A-H2AA	124.0
C3A-C2A-H2AA	124.0
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	113.5 (6)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AA}$	123.2
C2A-C3A-H3AA	123.2
C4-S1B-C1B	93.5 (11)
C2B-C1B-S1B	111.0 (19)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{BA}$	124.5
S1B-C1B-H1BA	124.5
C1B-C2B-C3B	112 (2)
C1B-C2B-H2BA	124.0
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	124.0
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	113.3 (17)
C14-N1-N2-C7	-163.4 (2)
C5-N1-N2-C7	12.0 (3)
C3A-C4-S1A-C1A	-0.4 (7)
C3B-C4-S1A-C1A	9(13)
C5-C4-S1A-C1A	-178.3 (4)
S1B-C4-S1A-C1A	-2.2 (7)
$\mathrm{C} 4-\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	0.7 (8)
S1A-C1A-C2A-C3A	-0.8 (14)
C3B-C4-C3A-C2A	-1.1 (19)
C5-C4-C3A-C2A	177.7 (7)
S1B-C4-C3A-C2A	165 (11)
S1A-C4-C3A-C2A	0.0 (12)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	0.5 (16)
C3A-C4-S1B-C1B	-17(10)
C3B-C4-S1B-C1B	-3(3)
C5-C4-S1B-C1B	174 (3)
S1A-C4-S1B-C1B	-2(3)
C4-S1B-C1B-C2B	3(6)
S1B-C1B-C2B-C3B	-3(8)
C3A-C4-C3B-C2B	4(4)
C5-C4-C3B-C2B	-175 (3)
S1B-C4-C3B-C2B	2(4)
$\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	-168 (16)
C1B-C2B-C3B-C4	0 (7)
C14-N1-C5-C4	-86.0 (3)
N2-N1-C5-C4	98.9 (2)
C14-N1-C5-C6	154.9 (2)
N2-N1-C5-C6	-20.1 (3)
C3A-C4-C5-N1	-90.9 (8)
C3B-C4-C5-N1	87.6 (19)

C9-C10-H10A	120.4
C10-C11-C12	121.4 (2)
C10-C11-Cl1	119.3 (2)
C12-C11-C11	119.3 (2)
C13-C12-C11	119.1 (2)
C13-C12-H12A	120.4
C11-C12-H12A	120.4
C12-C13-C8	120.5 (2)
C12-C13-H13A	119.8
C8-C13-H13A	119.8
N3-C14-N1	116.4 (2)
N3-C14-S2	123.1 (2)
N1-C14-S2	120.50 (19)
S1B-C4-C5-N1	-89.2 (7)
S1A-C4-C5-N1	86.6 (2)
C3A-C4-C5-C6	20.2 (8)
C3B-C4-C5-C6	-161.3 (19)
S1B-C4-C5-C6	21.9 (7)
S1A-C4-C5-C6	-162.34 (18)
N1-C5-C6-C7	19.1 (2)
C4-C5-C6-C7	-98.4 (2)
N1-N2-C7-C8	179.6 (2)
N1-N2-C7-C6	2.6 (3)
C5-C6-C7-N2	-14.8 (3)
C5-C6-C7-C8	168.2 (2)
C10-C9-C8-C13	-0.6 (4)
C10-C9-C8-C7	179.3 (2)
N2-C7-C8-C9	-170.3 (2)
C6-C7- $\mathrm{C} 8-\mathrm{C} 9$	6.4 (4)
N2-C7-C8-C13	9.6 (4)
C6-C7-C8-C13	-173.7 (2)
C8-C9-C10-C11	0.8 (4)
C9-C10-C11-C12	-0.3 (4)
C9-C10-C11-Cl1	179.84 (19)
C10-C11-C12-C13	-0.4 (4)
C11-C11-C12-C13	179.5 (2)
C11-C12-C13-C8	0.5 (4)
C9-C8-C13-C12	-0.1 (4)
C7-C8-C13-C12	-179.9 (2)
N2-N1-C14-N3	-3.3 (4)
C5-N1-C14-N3	-178.0 (2)
N2-N1-C14-S2	175.10 (17)
C5-N1-C14-S2	0.4 (3)

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{S} 1 A / \mathrm{C} 1 A-\mathrm{C} 3 A / \mathrm{C} 4$ and $\mathrm{S} 1 B / \mathrm{C} 1 B-\mathrm{C} 3 B / \mathrm{C} 4$ rings, respectively.
$D-\mathrm{H} \cdots A$
D-H
$\mathrm{H} \cdots A$
$D \cdots A$
$D-\mathrm{H} \cdots A$

sup-6

supplementary materials

N3-H1N3 \cdots N2	0.90 (4)	2.28 (4)	2.656 (3)	105 (3)
N3-H2N3 \cdots S $2^{\text {i }}$	0.89 (4)	2.52 (4)	3.400 (3)	170 (3)
C5-H5A \cdots S1A ${ }^{\text {ii }}$	1.00	2.86	3.664 (3)	138
C9-H9A $\cdots \mathrm{Cg} 1{ }^{\text {iii }}$	0.95	2.79	3.628 (4)	148
C9-H9A \cdots Cg2 ${ }^{\text {iii }}$	0.95	2.77	3.595 (18)	145

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $-x+1,-y+2,-z+2$; (iii) $x-1, y, z$.

supplementary materials

Fig. 1

Fig. 2

[^0]: \ddagger Thomson Reuters ResearcherID: A-3561-2009.
 § Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

[^1]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5024).

